

Course : VIJETA & VIJAY (ADP & ADR) Date : 11-04-2015

TEST INFORMATION

DATE: 15.04.2015

PART TEST-01 (PT-01)

Syllabus : Function & Inverse Trigonometric Function, Limits, Continuity & Derivability, Quadratic Equation

REVISION DPP OF LIMITS, CONTINUITY & DERIVABILITY AND QUADRATIC EQUATION

9. The least positive integral solution of
$$x^2 - 4x > \cot^{-1}x$$
 is
(A) 1 (B) 2 (C) 5 (D) 4
10. The value of $\lim_{x \to \frac{\pi}{2}} \frac{\frac{\pi}{3} - \sin^{-1}(2x\sqrt{1-x^2})}{x - \sqrt{3}}$ is
 $\frac{x - \sqrt{3}}{2}$ (A) 1 (B) 2 (C) 3 (D) 4
11. $\left(\lim_{x \to \frac{\pi}{2}} \prod_{i=1}^{n} \left[\frac{1}{2}\right]^n$, (where [] denotes GIF) is equal to
(A) 1 (B) 2 (C) 3 (D) 4
11. $\left(\lim_{x \to \frac{\pi}{2}} \prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i=1}^{n} \sum_{x \to 0}^{1} \sum_{x \to$

20.	If f(x) = $\begin{cases} \frac{1}{x^2} - \frac{1}{x^2} & , x < 0 \\ \sin^{-1}(x+b) & , x \ge 0 \end{cases}$ then at x = 0, f(x) is				
	(A) continuous if $b = 0$ (C) differentiable for b	= ± 1	(B) discontinuous for a (D) non-differentiable f	iny real b for any real b	
21.	Consider a continuous Lim $f(x)$ is a non-zero $x \to \infty$	s function f:[0, ∞) \rightarrow [0, \circ finite number then	∞). If f(ab) = f(a) f(b) for	all a, b in the domain of ' f ' and	
	(A) $f(2) = 2$	(B) $\sum_{r=1}^{10} f(r) = 55$	(C) $\sum_{r=0}^{10} f(r) = 11$	(D) f'(2) = 0	
22.	If $f(x) = sin(x -1) $	-2 then			
	(A) $f(x)$ is continuous a (C) $f'(2) = \cos 1$	ut x = 2	(B) f(x) is differentiable (D) f(x) is non-different	e at $x = 2$ tiable at $x = 0$	
23.	A quadratic equation f one is correct?	$f(x) = ax^2 + bx + c = 0 ha$	as positive distinct roots	reciprocal of each other. Which	
	(A) $f'(1) = 0$	(B) af'(1) < 0	(C) c ≠ 0	(D) abc ≠ 0	
24.	If the roots of the equa then	ation $(\lambda - 2)(x^2 + x + 1)^2$	$-(\lambda + 2)(x^4 + x^2 + 1) = 0$) are real and equal for $\lambda = \lambda_1, \lambda_2$	
	$(A) \lambda_1 + \lambda_2 = 0$	(B) $ \lambda_1 - \lambda_2 = 6$	(C) $\lambda_1^2 + \lambda_2^2 = 32$	(D) all of these	
25.	For all $\lambda \in R$, the qua following may be true?	dratic equation $ax^2 + (b + c)$	$-\lambda)\mathbf{x} + (\mathbf{a} - \mathbf{b} - \lambda) = 0$	as real roots. Then which of the	
26	(A) $a = b$ Which of the following	(B) $D < a < 0$	(C) $D > a > 0$	(D) a > b > 0	
20.	(A) (0, 2)	(B) $(4, \infty)$	(C) $(0, 3)$	$ x - 4 \ge x^2 - 3x + 4 $ (D) [4, 5)	
27.	If $p = \lim_{n \to \infty} n^{-n^2} \{(n + 2^{\circ})\}$	$(n + 2^{-1})(n + 2^{-2}) \dots (n^{-1})$	+ 2^{-n+1}) ⁿ then which of th	e following is true?	
	(A) p is irrational	Y	(B) integer nearest to	o is 7	
	(C) $p > \lim_{x \to \infty} \left(\frac{1+x}{x} \right)^{criv}$	^	(D) all of these		
28.	If $f(x) = [4x] + {3x}$ when (A) number of points of (C) $f'(x) = 3$ wherever	re [.] denotes GIF and {.] f discontinuity of f(x) are defined	} denotes FPF then for x 25 (B) f'(0) = 0 (D) f(x) < 20	∈[0, 5]	
29.	The equation $2\log(x + (A) \alpha = 12)$	3) = log (α x) has only on (B) $\alpha \in (-\infty, 0)$	e solution if (C) α∈(0, ∞)	(D) α ∈(0,12) ∪ {24}	
30.	If $x^2 + 2ax + a < 0 \forall x$ (A) $a \in (0, 1)$	∈ [1, 2] then	(B) a > 1		
	(C) $a < -\frac{4}{5}$		(D) x^2 + 2ax + a = 0 fo	r some x > 2	
31.	$\lim_{x \to \infty} \left(\frac{ax+3}{bx+2} \right)^{bx} \text{ is equ}$	al to (a and b are positive	e)		
	(A) 0 if a < b (C) ∞ if a > b		(B) e if a = b (D) 1 if a > b		
32.	If $f(x) = \lim_{x \to \infty} x \sinh \ell n$	$\frac{\sin a + \frac{1}{x}}{\sin a}$ where a, b $\in \left($	$\left(0,\frac{\pi}{2}\right)$, then f(x) can take	e value(s)	
	(A) 0	(B) 1	(C) –2	(D) 5	

	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005				
Resulialice	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	PAGE NO 2			
Educating for better tomorrow	Toll Free: 1800 200 2244 1800 258 5555 CIN: U80302RJ2007PTC024029	PAGE NO3			

Comprehension #1 (Q. 33 to 35)

If f(x) is continuous at x = 0 then xf(x) is differentiable at x = 0. By changing origin we can say that if f(x - a) is continuous at x = a then (x - a) f(x - a) is differentiable at x = a

The largest set over which $\frac{x \sin |x|}{1 - |x|^2}$ is differentiable is 33.

34.

35.

Let f(x) = |x|, $g(x) = \sin x$ and h(x) = g(x) f(g(x)) then (A) h(x) is continuous but not differentiable at x = 0(B) h(x) is continuous and differentiable everywhere

(C) h(x) is continuous everywhere and differentiable only at x = 0(D) all of these

Comprehension #2 (Q. No. 36 to 37)

If left hand derivative and right hand derivative of a function is same and finite then the function is continuous as well as differentiable. If left hand and right hand derivatives are different but finite then the function is continuous but not differentiable. If one of the derivatives is infinite then the function may be continuous but not differentiable.

36. If
$$f(x) = \int_{0}^{x} [t] dt$$
 then

(A) f(x) is continuous and differentiable at $x \in N$ (B) f(x) is continuous but not differentiable at $x \in N$ (D) f(x) is continuous and differentiable at $x \in Q$

 $f(x) = \frac{x}{1+2^{1/x}}$ is 37.

(A) continuous at all points (C) continuous for $x \in R - \{0\}$

(B) differentiable at all points (D) non-differentiable at x = 0, 1

(D) $\frac{25}{16}$

Comprehension #3 (Q. No. 38 to 40)

	$\phi: \mathbb{R} \to \mathbb{R}$ is a co	ntinuous function satisfy	ing relation $\phi(\mathbf{x}) - 2\phi\left(\frac{\mathbf{x}}{2}\right)$	$+\phi\left(\frac{x}{4}\right) = x^2$ and $\phi(0) = 1$.
38. 39.	The graph of y = (A) parabola One of the vertic	φ(x) is a (B) ellipse es of the conic is	(C) hyperbola	(D) circle
	(A) (1, 0)	(B) (0, 1)	(C) (1, 1)	(D) $\left(\frac{1}{2}, \frac{1}{2}\right)$
40.	Length of latus re	ectum of conic is		

40

(A) $\frac{9}{16}$ $\frac{16}{25}$ (B)

ANSWER KEY DPP # 1									
1.	(B)	2.	(D)	3.	(A)	4.	(A)	5.	(B)
6.	(C)	7.	(A)	8.	(D)	9.	(B)	10.	(C)
11.	(AB)	12.	(BD)	13.	(ABC)	14.	(ACD)		
15.	(ABCD)	16.	(ABCD)	17.	(ABC)	18.	(ABCD)	19.	(ABC)
20.	(ACD)	21.	(AB)	22.	(BC)	23.	(BCD)	24.	(ABD)
25.	(ABC)	26.	(AB)	27.	(BCD)	28.	(ABC)	29.	(AC)
30.	(ABD)	31.	(AB)	32.	(ACD)	33.	(B)	34.	(A)
35.	(D)	36.	(C)	37.	(B)				
38.	$(A) \rightarrow (p)$, (E	B) → (p), ($C) \to (p,q,s),$	$(D) \rightarrow (s)$		39.	5	40.	4

(C) $\frac{16}{9}$

	Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005				
	Website : www.resonance.ac.in E-mail : contact@resonance.ac.in	BAGE NO 4			
Educating for better tomorrow	Toll Free : 1800 200 2244 1800 258 5555 CIN: U80302RJ2007PTC024029	FAGE NO:-4			